## **Workshop Summary & Conclusions**

## Cementitious Material for Waste Treatment, Disposal, Remediation and Decommissioning

## David S. Kosson<sup>1</sup> and Christine Langton<sup>2</sup>

<sup>1</sup>Vanderbilt University &

Consortium for Risk Evaluation with Stakeholder Participation

<sup>2</sup>Savannah River National Laboratory



## A Team Effort!!























**SRS CAB** 

**Tuskegee University** 

WA Ecology

























**Summary and Conclusions** 14 December 2006 (page 2)

## **Objectives and Expected Outcomes**

Provide common understanding amongst DOE, regulators, site operators, researchers, and other stakeholders

- State of science
- Current practice
- Knowledge gaps

#### Identify opportunities to

- Improve waste management and restoration systems
- Reduce uncertainties in long-term performance conceptual models and quantitative predictions

C. Langton, D. Kosson

#### **Motivation**

Support DOE closure projects across the complex – waste treatment, containment structures, D&D, environmental restoration

- Grouting of tanks that contain residual radioactive materials
- Construction of vaults for waste containment/disposal
- Sealing and filling of voids in systems to be decommissioned
- Cementitious waste forms

#### Need for better estimates of long-term performance

- Near-surface disposal of radionuclides in cementitious materials and non-vitrified waste forms.
- Structural integrity & Isolation
- Release of constituents of concern

## Citizens' Expectations

## SRS Citizens Advisory Board Perspectives

- Regulatory-accepted monitoring with appropriate oversight.
- Peer-reviewed technology demonstrated at an adequate scale.
- Peer-reviewed performance prediction model.
- Contingency plan if performance does not meet requirements or predictions.

J. Ortaldo, SRS CAB

# **Example Project Needs Relative Priority of Grout Attributes**

| Relative Priority | Attribute                       |
|-------------------|---------------------------------|
| Very high         | Low hydraulic conductivity      |
| Very high         | Degradation resistance          |
| High              | Pore water chemistry (↑pH, ↓Eh) |
| Medium            | Strength                        |
| Medium            | Flowability                     |

S. Reboul, J. Newman, SRS

## Disposal System Functions Include:

Limit water contact with waste

Limit intruder contact with waste

Chemically retain radionuclides

Provide shielding

Stabilize waste (e.g., limit voids and erosion)

# Role of Release Models in Performance Assessments



# EPA Response to Science Advisory Board Concerns

The Agency has also been seeking new testing approaches with:

- Better accuracy over a range of conditions
- Better foundation in basic science (i.e., not empirical)
- Better applicability in environmental assessments (i.e., groundwater fate and transport modeling)
- Flexibility to apply to a broad range of waste types and over a range of conditions that affect leaching and occur in management

Validation in both the lab and field

Practical applicability of tests

S. Thorneloe, G. Helms, USEPA

## **Overarching Leaching Assessment Framework**

(Kosson, van der Sloot, Sanchez & Garrabrants, Environ. Engr. Sci., 19, 159-203, 2002)

Measure intrinsic leaching characteristics of material (aqueous-solid partitioning (pH and LS); release kinetics)

- Batch extractions & tank leaching (monoliths)
- Constituent fraction readily leached
- Controlling mechanism for release (mineral dissolution and solubility, solid phase adsorption, aqueous phase complexation)
- Release kinetics for mass transfer parameters

#### Evaluate release in the context of field scenario

- External influencing factors such as carbonation, oxidation
- Hydrology
- Mineralogical changes

Use geochemical speciation and mass transfer models to estimate release for alternative scenarios

- Model complexity to match information needs
- Many scenarios can be evaluated from single data set

# **Issues in Cementitious Materials Applications for Waste Isolation**

- Issues are different depending on the duration (short vs. long half lives), magnitude, and characteristics of the hazard being mitigated.
- For commercial LLW disposal, most radionuclides were expected to decay to insignificant levels by 500 years
   AND
- Justification of performance of cementitious materials beyond this was thought to be very challenging

# **Issues in Cementitious Materials Applications for Waste Isolation**

- The time frame for regulatory analysis for waste isolation may extend to many thousands of years or beyond.
- The long time frame creates additional uncertainty, which may or may not be able to be addressed with research.

## **Example Uncertainties in Cementitious Materials Applications for Waste Isolation**

- The hydrologic properties of cementitious materials over long time periods (> 100 years).
- Unsaturated properties of cementitious materials.
- The limited experience/database of retention properties of cementitious materials for some radionuclides (e.g., Sn-126, Se-79, Np-237).
- The degradation mechanisms and long-term performance of novel formulations (e.g., chemically engineered cements).

## **Example Uncertainties in Cementitious Materials Applications for Waste Isolation**

- The validity of and assumed lack of synergism between the degradation mechanisms evaluated with the commonly used empirical relationships.
- The influence of fractures on degradation mechanisms.
- Oxidation of reducing formulations over time.
- Extension of laboratory-scale, short-term tests to large-scale, long-term applications (Does ANS 16.1 address mechanisms relevant to timeframes of 1000's of years?

## A Few Research Suggestions (examples)

#### Areas of research that may be tractable are:

- Development of accelerated laboratory-scale test methods.
- Compilation of a database of international experience (both good and bad).
- Experiments to estimate the retention properties of cementitious materials for lesser studied radionuclides.
- Experiments to evaluate potential synergisms between degradation mechanisms, including the impact of fractures.

### Many Coupled Processes: Integrated Long-Term Evolution

Chemical degradation and physical stress effects are coupled and integrated.

#### Physical stress

- Cyclic loading
- Flexural bending
- Drying shrinkage
- Seismic events
- Settlement

#### Chemical degradation

- Oxidation
- Leaching
- Expansive reactions
  - Carbonation
  - Sulfate attack
  - Rebar corrosion

#### Microcracks

- Increase porosity
- Increase interaction pore water/surface





#### Through-cracks

- Preferential flow path
- Diffusive and convective release
- Loss of strength

#### Spalling

- Loss of cohesiveness
  - Two body problem
- Eventual release from "granular" material



## **System Definition and Expectations**



### **Understanding the System**

System Definition

Define Controlling Degradation Mechanisms

Boundary Conditions
Water, Oxygen
Carbon Dioxide
Sulfate, Chloride
Physical Stresses
Other wastes &
external conditions

Matrix Evolution
Permeability
Geochemistry
Aqueous & Gas Exchange
(advection, diffusion,
capillary flow,
barametric pumping)

Conceptual Model

Source Release Model

Summary and Conclusions 14 December 2006 (page 18)

### Process- and Mechanism-Based Experimentation & Modeling



## Test Methods for Understanding & Implementation



G. Shearer, Princeton



J. Rose, CEREGE



H. van der Sloot, ECN

Summary and Conclusions 14 December 2006 (page 20)

## **Example - Integrated Use of Testing and Simulation**



Summary and Conclusions
14 December 2006 (page 21)



### The Challenge



## Sage Advice

- Time scales for experiment and modelling are longer than other steps.
- Steady effort over a longer time is better than crash programs.
- We are in a position to assess data needs and procedures - reliance, it is suggested, should be on modelling for the long term.

F. Glasser, U. of Aberdeen

## Sage Advice

- Define objectives realistically.
- Agree implementation.
- Develop and coordinate work packages.
- Conduct actual trials and learn from scale-up.
- Integrate planning with support activities.
- Develop, present and gain approval for plans.

F. Glasser, U. of Aberdeen

## Sage Advice

#### **Action check list:**

- Matrix properties: evolution of pH and of electroactivity of redox couples.
- Bonding mechanisms of radwaste species in fresh and altered matrices.
- Formulation priorities: establish protocols including changing nature of "cement" and aggregates.
- Scale up effects.
- Cracking and crack healing: impacts on permeation.
- Role of accelerated testing.
- Development of modelling protocols: verification/validation of model predictions and integration of models for "physical" and "chemical" attributes of performance.

F. Glasser, U. of Aberdeen

## 1. Controlling Mechanisms (definition & quantification)

- Geochemical Phases & Aqueous-Solid Partitioning
  - Thermodynamics
- Critical Reactions
  - Kinetics
- Mass transfer relationships
  - Permeability as a function of cracking
  - Aqueous & Gas phase diffusivity as a function of moisture saturation, porosity
  - Formation of reaction fronts, altered/depleted rinds, sharp layers
- Physical deterioration
  - Mechanisms & rates
- Coupling (synergistic & antagonistic) amongst processes

#### 2. Standardized & Accepted Test Methods

- Parameter Estimates
  - Leaching (equilibrium, mass transfer)
  - Reducing capacity
  - Permeability for saturated & unsaturated conditions (liquid & gas phases)
  - Structural degradation (Young's modulus, others)
  - Others
- Accelerated Aging
  - Carbonation, oxidation, Sulfate attack, matrix depletion
- Simplified Testing to Support Operations

## 3. Multi-scale Verification of Conceptual Models and Predictions

- Laboratory
- · Pilot-scale
- Full-scale (monitoring and evaluation of current systems, e.g., saltstone)

#### 4. Guidance & Criteria

- Sample characterization
  - How many samples?
  - What should be measured?
- Waste form formulation & selection
- System design
- Performance Monitoring
- De minimus levels for reuse of D&D materials

## 5. Standardized Performance Models and Databases

- Contaminant Release Model
  - balances mechanistic understanding and practical implementation
- Structural Integrity & Degradation Model
  - balances mechanistic understanding and practical implementation
- Performance Scenarios
  - Tank closure, near surface disposal, D&D
- Parameter and Testing Database
  - Geochemical formalization, thermodynamics, kinetics, mass transfer, other physical & chemical properties
  - Testing data
- Experience Knowledge Base

#### **Good News!**

#### We are not alone!

- Commonality amongst DOE sites and with private sector nuclear facilities
- Commonality with other sectors
  - Waste management
  - Construction
- US & International Experience

There is a vast amount of knowledge, experience and on-going inquiry that should be coordinated for most efficient progress.

#### **Path Forward**

- Secure Leadership Commitment
  - Multi-agency collaboration
  - Engagement of research, practitioner and regulatory communities
  - Stakeholder communication
  - Realistic allocation of resources
- Develop Roadmap for Progress
  - Link with key milestones and decisions
  - Link project needs with research, development and standardization progress
- Establish User Groups and Implementation Teams
- Make it happen!





#### **Mark Gilbertson**

Deputy Assistant Secretary
Engineering & Technology
Office of Environmental Management